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Abstract
We present an indivisible I/O-efficient algorithm for subgraph enumeration, where the objective is
to list all the subgraphs of a massive graph G := (V, E) that are isomorphic to a pattern graph Q

having k = O(1) vertices. Our algorithm performs O( |E|k/2

Mk/2−1B
logM/B

|E|
B

+ |E|ρ

Mρ−1B
) I/Os with high

probability, where ρ is the fractional edge covering number of Q (it always holds ρ ≥ k/2, regardless
of Q), M is the number of words in (internal) memory, and B is the number of words in a disk block.
Our solution is optimal in the class of indivisible algorithms for all pattern graphs with ρ > k/2.
When ρ = k/2, our algorithm is still optimal as long as M/B ≥ (|E|/B)ϵ for any constant ϵ > 0.
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1 Introduction

Subgraph enumeration is the problem of listing all the subgraphs of a data graph G := (V, E)
that are isomorphic to a pattern graph Q. It is fundamental to a wide range of applications
and has been extensively studied in computer science; see [2,3,5–8,10–12,14–18,24,26,29,38]
for entry points into the literature. The problem is NP-hard [9] when Q is allowed to have
arbitrarily many vertices. In practice, however, a pattern Q of interest is often considerably
smaller than the data graph G and usually remains the same even as G increases in size over
time. For these reasons, research in recent years has focused on pattern graphs Q having O(1)
vertices. In the random access machine (RAM) model, numerous (subgraph enumeration)
algorithms [4,25,28,30–33,37] have been discovered to achieve worst-case optimal running
time (sometimes up to an O(polylog |E|) factor) on such pattern graphs.

RAM algorithms, designed to minimize CPU time, are ill-fitted for massive graphs G

that cannot be stored in a machine’s (main) memory and thus must reside at least partially
in the disk. In those environments, the efficiency bottleneck is no longer CPU time, but
instead, the number of I/O accesses transferring data between the disk and memory. As
data graphs’ volume continues to outgrow commodity machines’ memory capacity, designing
I/O-efficient solutions to subgraph enumeration has been a critical challenge. This work
will present new progress in tackling the challenge that brings us close to unraveling the
problem’s I/O complexity.
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11:2 Enumerating Subgraphs of Constant Sizes in External Memory

1.1 Problem Definitions and Complexity Parameters
This subsection will formally define the subgraph enumeration problem, the computation
model assumed, and the parameters used to characterize algorithm efficiency.

Subgraph Enumeration. We are given a simple undirected graph G := (V, E) called the
data graph and a simple undirected graph Q := (VQ, EQ) called the pattern graph. We require
that Q should have a constant number k := |VQ| of vertices (and hence, |EQ| = O(k2) = O(1)).
A subgraph of G is defined as a simple undirected graph Gsub := (Vsub, Esub) where Vsub ⊆ V

and Esub ⊆ E. We call Gsub an occurrence of Q if the former is isomorphic to the latter.
The goal of the subgraph enumeration problem is to enumerate all the occurrences of Q.

We assume that Q is connected (i.e., it has only one connected component), and G has
no isolated vertices (i.e., vertices with no incident edges). Isolated vertices cannot participate
in any occurrence and, thus, can be safely deleted. As such, |V | ≤ 2|E| always holds.

Computation Model. We will investigate the problem in the external memory (EM)
model [1], the de-facto model for studying I/O-efficient algorithms. Under this model, a
machine is equipped with M words of memory and a disk of an unbounded size that has
been formatted into blocks of B words. The values of M and B satisfy M ≥ 2B. A disk
I/O — henceforth, simply I/O — either reads a block of data from the disk into memory
or conversely writes B words from memory into a disk block. The cost of an algorithm is
defined as the number of I/Os performed (CPU computation is for free).

For subgraph enumeration, the data graph is provided under the adjacency format in
O(|E|/B) disk blocks, and the pattern graph is stored in memory using O(1) words. In
early research (see [21,34] and the references therein), an algorithm was required to write all
the occurrences of Q to the disk. However, as the number of occurrences can be gigantic,
the cost of result outputting alone may dominate an algorithm’s total cost, thus hampering
an effective investigation into the problem’s intrinsic I/O complexity. Moreover, in some
applications, disk materialization may not even be the intended approach for result reporting,
e.g., an algorithm could be instructed to send out all the occurrences by network. For these
reasons, the mainstream research nowadays strips off the outputting cost by introducing an
emit(.) function. Once an occurrence of Q — say, Gsub — has been found, the algorithm can
invoke emit(Gsub) to report Gsub for free; the algorithm is said to have emitted Gsub in that
case. The algorithm must ensure that every occurrence should be emitted exactly once. It is
worth mentioning that an algorithm designed to work with an emit(.) function can be easily
adapted to produce the result in the disk with O(OUT/B) extra I/Os, where OUT is the
total number of occurrences.

We will concentrate on the class of indivisible algorithms (sometimes referred to as
tuple-based algorithms). Such an algorithm adheres to the constraint that each I/O can
bring O(B) edges into memory (this rule prevents, for example, encoding tricks that can
compress ω(B) edges into memory). Furthermore, to emit an occurrence Gsub, an indivisible
algorithm is required to have loaded all the edges of Gsub in memory simultaneously. Although
the indivisible class does not capture all possible algorithms, it encapsulates all existing
subgraph enumeration algorithms we are aware of, with a single exception (to be discussed
in Section 1.2). Hence, understanding the optimal I/O complexity achievable by this class
offers meaningful insight into the problem’s characteristics.

Fractional Edge Covering Numbers. Next, we will introduce the fractional edge covering
number, a notion from graph theory that plays an imperative role in characterizing the I/O
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complexity of subgraph enumeration. As before, let Q := (VQ, EQ) be the input pattern
graph. Define W as a function that maps each edge e ∈ EQ to a real-valued weight W (e) ≥ 0.
We call W a fractional edge covering of Q if it holds for every vertex v ∈ VQ that:∑

e∈EQ:e incident to v

W (e) ≥ 1.

We refer to
∑

e∈EQ
W (e) as the total weight of W . The fractional edge covering number of

Q, denoted as ρ, is the smallest total weight of all the fractional edge coverings of Q.

Complexity Parameters and Math Conventions. We will measure the I/O cost of a
subgraph enumeration algorithm using five parameters: |E|, ρ, k, M , and B. Whenever a
random event is said to hold “with high probability” — w.h.p. for short — we require the
event to hold with probability at least 1 − 1/|E|ξ, where ξ can be set to an arbitrarily large
constant. For an integer x ≥ 1, [x] represents the set {1, 2, ..., x}. We define sort(n) to be
the I/O complexity of sorting n elements; it is known [1] that sort(n) = O(⌈ n

B ⌉ logM/B⌈ n
B ⌉).

1.2 Previous Work

In the EM model, research on subgraph enumeration started with triangle enumeration, where
the pattern graph is Q := 3-clique, a.k.a., triangle. Pagh and Silvestri [35] gave a randomized
algorithm that can emit the triangles of a data graph G := (V, E) in O(|E|1.5/(

√
MB)) I/Os

in expectation. They also de-randomized their algorithm to obtain a deterministic I/O bound
of O( |E|1.5

√
MB

logM/B
|E|
B ) [35]. Their result was later improved by Hu, Qiao, and Tao [20], who

managed to emit all triangles deterministically in O(|E|1.5/(
√

MB)) I/Os. The result of [20]
matches an I/O lower bound of Ω(|E|1.5/(

√
MB)) [21, 35] on indivisible algorithms.

The lower bound argument of [21, 35] can be extended [19, 20] to show that, for any
pattern graph Q (of a constant size), every indivisible algorithm — no matter randomized
or deterministic — must perform Ω(|E|ρ/(Mρ−1B)) I/Os in the worst case to emit all
the occurrences of Q, where ρ is the fractional edge covering number of Q (for triangle,
ρ = 1.5). Matching this lower bound for arbitrary Q has been an intriguing open problem.
In [19], Hu and Yi developed a deterministic algorithm that achieves an I/O complexity
of O( |E|ρ

Mρ−1B · logM/B
|E|
B ) for any acyclic pattern graph Q; their algorithm, however, does

not work for cyclic Q. In [27], Koutris, Beame, and Suciu presented a technique that can
convert an algorithm from the so-called massively parallel computation (MPC) model to an
algorithm in EM. By combining their technique with a recent MPC algorithm of Ketsman,
Suciu, and Tao [23], one can obtain a randomized EM algorithm that can solve, w.h.p., the
subgraph enumeration problem for any pattern graph Q in O( |E|ρ

Mρ−1B · polylog |E|) I/Os, as
long as M ≥ |E|c where c < 1 is a positive constant dependent on Q.

All the above algorithms are indivisible. Outside the indivisible class, we are aware of only
one algorithm due to Eppstein et al. [13], which is designed for triangle enumeration. Their
(randomized) solution guarantees an expected I/O cost of O(sort(α|V |)+sort(|E|⌈ α log wlen

wlen ⌉)+
sort(OUT)) where OUT is the number of occurrences, wlen is the number of bits in a word,
and α is the arboricity value of G (the algorithm was designed for writing all occurrences
to the disk; it can also be deployed for result emission, but the I/O complexity does not
decrease). The value of α falls between 1 and O(

√
E). Compared to the aforementioned

indivisible solutions [20,35] to triangle enumeration, the algorithm of [13] may have a lower
I/O complexity when α and OUT are sufficiently small.

ICDT 2023



11:4 Enumerating Subgraphs of Constant Sizes in External Memory

pattern Q I/O cost in big-O source remark
triangle |E|1.5/(

√
MB) expected [35] rand.

triangle |E|1.5
√

MB
logM/B

|E|
B

[35] det.
triangle |E|1.5/(

√
MB) [20] det.

triangle sort(α|V |) + sort(|E|⌈ α log wlen
wlen ⌉) α := arboricity of G

+sort(OUT) expected [13] wlen := word length
rand., outside indivisible class

acyclic |E|ρ

Mρ−1B
logM/B

|E|
B

[19] det.
arbitrary |E|ρ

Mρ−1B
· polylog |E| w.h.p. [23] rand., needs M ≥ |E|c for some

Q-dependent constant c ∈ (0, 1)

arbitrary |E|k/2

Mk/2−1B
log M

B

|E|
B

+ |E|ρ

Mρ−1B
ours rand., optimal when ρ > k

2

w.h.p. and expected or M
B

≥ ( |E|
B

)ϵ for any constant ϵ > 0

Table 1 Comparison of our and previous results on subgraph enumeration

1.3 Our Contributions
The main result of this paper is:

▶ Theorem 1. Let G := (V, E) be a simple undirected graph with no isolated vertices. Let
Q := (VQ, EQ) be a simple undirected connected pattern graph with k := O(1) vertices. When
|E| ≥ M , there is an algorithm in EM that, with high probability, emits every occurrence of
Q in G exactly once with O( |E|k/2

Mk/2−1B
logM/B

|E|
B + |E|ρ

Mρ−1B ) I/Os, where ρ is the fractional
edge covering number of Q, M is the number of words in memory, and B is the number of
words in a disk block. The same I/O complexity holds also in expectation.

The theorem applies to all M and B satisfying M ≥ 2B. The value of ρ is at least k/2
for all pattern graphs Q, but can reach k − 1 for some Q [36]. Our algorithm is indivisible;
when ρ > k/2, its I/O complexity becomes O( |E|ρ

Mρ−1B ), matching the indivisible lower bound
Ω( |E|ρ

Mρ−1B ) (see Section 1.2). When ρ = k/2, the algorithm is still optimal as long as
M/B ≥ (|E|/B)ϵ for an arbitrarily constant ϵ > 0 (a condition likely to hold in reality).
Table 1 presents a comparison between our and previous results.

2 Preliminaries

We will cast subgraph enumeration as a join problem for two reasons. First, it permits
us to simplify presentation by leveraging relational algebra’s expressive power. Second,
our algorithm has a crucial connection to the isolated cartesian product theorem recently
developed by Ketsman, Suciu, and Tao [23], which is stated on joins and still lacks an intuitive
interpretation on graphs currently. In Section 2.1, we will define the relevant concepts of
joins, formulate the join enumeration problem in EM, and review a textbook join algorithm.
In Section 2.2, we will explain how to reduce subgraph enumeration to joins. Finally, in
Section 2.3, we will introduce a concentration bound that will be useful in our analysis.

2.1 Joins on Binary Relations
Joins. Define att as an arbitrary finite set of attributes. A tuple over a set U ⊆ att of
attributes is a function t : U → dom, where dom is an arbitrary infinite set. For any
Usub ⊆ U , we define t[Usub] as the tuple tsub over Usub such that tsub(X) = t(X) for every
X ∈ Usub. A relation is a set R of tuples over the same set U of attributes; the schema of
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R — denoted as schema(R) — is U . R is unary if schema(R) has one attribute, or binary if
schema(R) has two attributes.

We define a join as a set Q of relations. Let schema(Q) :=
⋃

R∈Q schema(R). The join
result, denoted as join(Q), is a relation over schema(Q) that can be formalized as

join(Q) := {tuple t over schema(Q) | ∀R ∈ Q : t[schema(R)] ∈ R}.

The input size of Q is defined as
∑

R∈Q |R|, namely, the total number of tuples in all relations.
We will call Q a binary join if all its relations are binary.

Schema Graphs. We define the schema graph of a join Q as the hypergraph G := (X , E)
where X := schema(Q) and E := {schema(R) | R ∈ Q}. We will consistently refer to the
vertices in X as “attributes” and to the elements in E as “hyperedges”. Note that G is a
“hyper”-graph, rather than just a “graph”, because each of its hyperedges may not have
exactly two attributes (e.g., if a relation R ∈ Q is unary, then the hyperedge schema(R) ∈ E
has only one attribute). Moreover, G may have identical hyperedges (this happens when two
relations in Q have the same schema). A hyperedge e ∈ E is unary if |e| = 1, or binary if
|e| = 2. Two vertices X1 ∈ X and X2 ∈ X are adjacent in G if there exists a hyperedge e ∈ E
containing both X1 and X2.

A function W mapping each hyperedge e ∈ E to a non-negative real value W (e) is called a
fractional edge covering of G if it satisfies the following condition: for every attribute X ∈ X ,∑

e∈E:X∈e W (e) ≥ 1, namely, the weights of all the hyperedges containing X add up to at
least 1. The total weight of W is defined as

∑
e∈E W (e). The fractional edge covering number

of G is the smallest total weight of all the fractional edge coverings of G.

Active Domains and Degrees. Let Q be a binary join with schema graph G :=
(X , E). For each attribute X ∈ X , we define the active domain of X as adom(X) :=⋃

R∈Q:X∈schema(R){t(X) | t ∈ R}. Henceforth, we will take the view that the attributes in
schema(Q) have mutually disjoint active domains (this loses no generality because one can
conceptually prefix each value with an attribute name, if necessary). Define the combined
active domain of Q as

adom :=
⋃

X∈schema(Q)

adom(X). (1)

Fix any attribute X ∈ X and any value v ∈ adom(X). We define the degree of v as

max
R∈Q:X∈schema(R)

|{u ∈ R | u(X) = v}|.

Intuitively, the degree tells us at most how many tuples can carry value v under attribute X

in a relation of Q. Moreover, define

degree of Q := max
v∈adom

degree of v. (2)

Join Result Enumeration in EM. Let Q be a binary join with input size N :=
∑

R∈Q |R|
and schema graph G. We will study the evaluation of Q under the EM model, assuming
that G has O(1) attributes. At the beginning of an algorithm, each relation R ∈ Q is stored
in O(|R|/B) consecutive blocks in the disk, and G is stored in memory using O(1) words.
Result reporting is done through a special function emit(.): every time the algorithm finds a
tuple t ∈ join(Q), it can emit t for free by calling emit(t). Every tuple in join(Q) should be
emitted exactly once. If the algorithm is randomized, we will use the statement “an event
holds with high probability (w.h.p.)” to state that the event holds with probability at least
1 − 1/N ξ, where ξ can be an arbitrarily large constant.

ICDT 2023



11:6 Enumerating Subgraphs of Constant Sizes in External Memory

Blocked Nested Loop (BNL). This textbook algorithm works for arbitrary joins:

▶ Lemma 2. Let Q be a join with r = O(1) input relations. The BNL algorithm emits every
tuple of join(Q) exactly once in O(⌈ Nr

Mr−1B ⌉) I/Os, where N :=
∑

R∈Q |R|, M is the number
of words in memory, and B is the number of words in a disk block.

The proof is trivial and omitted. BNL will serve as a building block in our algorithms.

2.2 Reduction from Subgraph Enumeration to Binary Joins

We can convert subgraph enumeration to binary-join evaluation with no degradation in terms
of worst-case I/O complexity. Consider an instance of subgraph enumeration with data graph
G := (V, E) and pattern graph Q := (VQ, EQ). We create a binary join Q on |EQ| relations
by executing the following steps for each edge {X1, X2} ∈ EQ (where X1 and X2 are distinct
vertices in VQ):

Add a relation R to Q with schema schema(R) := {X1, X2}.
For each edge {u, v} ∈ E (where u and v are distinct vertices in V ), define a tuple t1 with
t1(X1) := u and t1(X2) := v, and another tuple t2 with t2(X1) := v and t2(X2) := u.
Add both t1 and t2 to R.

The above conversion has several properties. First, the schema graph G := (X , E) of Q is
isomorphic to the pattern graph Q. Second, each relation R ∈ Q has 2|E| tuples such that
the input size of Q is 2|E| · |EQ| = Θ(|E|). Third, the relations in Q have distinct schemas.

The lemma below, which is proved in Appendix A, shows that an efficient algorithm for
evaluating Q implies an efficient algorithm for performing subgraph enumeration on G.

▶ Lemma 3. Consider any input to the subgraph enumeration problem with data graph G

and pattern graph Q. Let Q be the join constructed in the way explained above. If we have
an algorithm to emit all the tuples of join(Q) in T I/Os w.h.p., then we can emit every
occurrence of Q in G exactly once using T + O(⌈|E|/B⌉) I/Os w.h.p..

By virtue of the above lemma, we will turn our attention to joins on binary relations.

2.3 A Concentration Bound under Partial Dependence

Next, we will review a Chernoff-like result due to Janson [22]. Let X1, X2, ..., Xn be random
variables satisfying Xi − E[Xi] ≤ 1 for all i ∈ [n]; these variables may not follow the same
distribution. Suppose that we are also given a dependency graph Gdep with {X1, X2, ..., Xn}
as the vertex set. Gdep must fulfill the following independence requirement: for any S ⊆
{X1, X2, ..., Xn} and any vertex Xi /∈ S (for some i ∈ [n]), if Xi is not adjacent to any vertex
in S, then Xi is independent of the joint distribution of the variables in S. In Theorem 2.3
of [22], Janson proved:

▶ Lemma 4 ( [22]). Set X :=
∑n

i=1 Xi, µ := E[X], and σ to any value at least
∑n

i=1 Var(Xi).
Define ∆ to be the maximum vertex degree in Gdep. Then, for any ϵ > 0, it holds that

Pr[X ≥ (1 + ϵ)µ] ≤ exp
(

− 8ϵ2 · µ2

25∆(σ + ϵ · µ/3)

)
. (3)
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3 An EM Algorithm for Binary Joins of Bounded Degrees

This section serves as a proof of:

▶ Lemma 5. Consider a binary join Q whose relations have distinct schemas. Let G := (X , E)
be the schema graph of Q, and set N :=

∑
R∈Q |R| and k := |X |. Fix any value λ ≥

√
NM ,

where M is the number of words in memory. If N ≥ M and Q has a degree at most λ,
there is an EM algorithm that, with probability at least 1 − 1/λξ, emits every tuple of join(Q)
exactly once in O(λk/(Mk−1B)) I/Os, where ξ can be an arbitrarily large constant, and B is
the number of words in a disk block.

Note that the success probability is expressed using λ rather than N . This will be
an essential feature in Section 4 where we utilize the lemma as a subroutine to tackle
general binary joins. To prove Lemma 5, we consider only k ≥ 3; if k = 2, G has only
two attributes — namely, Q has only one single relation — in which case we can trivially
emit the tuples of join(Q) exactly once in O(N/B) I/Os. When k ≥ 3, it holds that
sort(N) = O(N1.5/(

√
MB)) = O(λk/(Mk−1B)).

3.1 An Algorithmic Framework
We will describe a high-level framework for evaluating the join Q in Lemma 5. Depending
on M , we will instantiate the framework differently in Sections 3.2 and 3.3, which together
will make a complete algorithm with the guarantees in Lemma 5.

Coloring. Set r := |Q|, i.e., the number of relations in Q (also the number of hyperedges
in E). Furthermore, define

s := ⌈λ/M⌉ (4)

and assume that we are given a function

Γ : adom → [s]. (5)

Recall that adom is the combined active domain of Q; see (1). We will refer to each possible
output of Γ as a color; in other words, Γ maps each value of adom to a color in [s]. We will
also assume that a coloring step has been performed to color all the tuples by Γ; namely,
for every relation R ∈ Q, any tuple t ∈ R, and each attribute X ∈ schema(R), the color
Γ(t(X)) is stored together with t (this means two extra words for each tuple). The choice
of Γ (henceforth named the coloring function), as well as the coloring step, is the key to
instantiating our algorithmic framework.

Color Schemes. We can divide the join result join(Q) by how the tuples therein are
colored by Γ. We say that two tuples t1 and t2 in join(Q) have the same color scheme if
Γ(t1(X)) = Γ(t2(X)) for every attribute X ∈ X . Formally, a color scheme is a function

γ : X → [s]. (6)

As each attribute can be colored any value in [s], there are in total s|X | = sk color schemes.
Every color scheme γ spawns a join of its own. For each relation R ∈ Q, define

Rγ := {t ∈ R | Γ(t(X)) = γ(X) for all X ∈ schema(R)}.

ICDT 2023



11:8 Enumerating Subgraphs of Constant Sizes in External Memory

Intuitively, Rγ is the subset of tuples in R that are colored by Γ in a way consistent with γ.
We can now define a join induced by γ:

Qγ := {Rγ | R ∈ Q}.

The sets join(Qγ) of all color schemes γ are mutually disjoint and their union is join(Q).

Algorithm. In Appendix B, we show that, after a preprocessing step with I/O cost
O(sort(N)), we can store the input relations of Qγ — for every color scheme γ — in
consecutive disk blocks. Then, for each γ, we deploy the BNL algorithm of Lemma 2 to emit
the tuples of join(Qγ). This completes the algorithm for evaluating Q.

Analysis. By Lemma 2, the BNL execution of all sk color schemes incurs a total I/O cost
of

O

(∑
γ

⌈
Nγ

M

⌉r−1 ⌈
Nγ

B

⌉)
= O

(
sk +

∑
γ

Nγ
r

Mr−1B

)
= O

(
sk +

∑
γ

∑
R∈Q |Rγ |r

Mr−1B

)
(7)

where Nγ is the input size of Qγ , and the second equality used the fact that |Q| has only a
constant number of relations.

To facilitate the analysis of (7), let us impose an arbitrary ordering on the attributes in
X ; we use the notation X1 < X2 to denote the fact that attribute X1 ∈ X precedes another
attribute X2 ∈ X in the ordering. Fix any two colors c1 ∈ [s] and c2 ∈ [s]. For each relation
R ∈ Q whose schema(R) has attributes X1 and X2 with X1 < X2, define

Rc1,c2 := {t ∈ R | Γ(t(X1)) = c1 and Γ(t(X2)) = c2};

namely, Rc1,c2 includes every tuple of R that receives colors c1 and c2 on attributes X1 and
X2, respectively. We can now derive:

(7) = O
(

sk +
∑

R∈Q
∑

γ |Rγ |r

Mr−1B

)
= O

(
sk + sk−2

Mr−1B

∑
R∈Q

∑
c1,c2∈[s]

|Rc1,c2 |r
)

(8)

where the second equality holds because each pair (c1, c2) is relevant to sk−2 color schemes.
Given the value of s in (4), the term sk is O((λ/M)k) = O(λk/(Mk−1B)). What is

non-trivial is to argue that the term sk−2

Mr−1B

∑
R∈Q

∑
c1,c2∈[s] |Rc1,c2 |r can also be bounded

by O(λk/(Mk−1B)). We will do so by choosing the coloring function Γ carefully according
to the memory size M .

3.2 When M = O(λ/ log2 λ)

We will first explain how to choose the coloring function Γ to ensure that the algorithm
described in Section 3.1 performs O(λk/(Mk−1B)) I/Os in expectation. Then, we will slightly
modify the algorithm to achieve the same I/O complexity with probability at least 1 − 1/λξ.

Choice of Γ. We decide Γ by independently mapping each value of adom to a color chosen
uniformly at random from [s]. This Γ can be stored as a list of (value, color) pairs in O(N/B)
blocks. The coloring step (as defined in Section 3.1) can then be performed in sort(N) I/Os.
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Identically-Colored Subsets. Let us first study a probability question that arises from
our analysis. Take an arbitrary relation R ∈ Q. Let X1 and X2 be the two attributes
in schema(R); w.l.o.g., assume X1 < X2 (recall from Section 3.1 that we have imposed
an arbitrary ordering on the attributes). Given an integer i ∈ [r], define an i-subset of R

to be a subset S ⊆ R with |S| = i. We say that S is identically colored if all the tuples
in S belong to the same color scheme; in other words, for any t1, t2 ∈ S, it holds that
Γ(t1(X1)) = Γ(t2(X1)) and Γ(t1(X2)) = Γ(t2(X2)). Define:

Yi := the number of identically colored i-subsets of R. (9)

Note that Yi is a random variable because its value varies with Γ. We want to understand
how large Yi is in expectation. The lemma below provides an answer.

▶ Lemma 6. E[Yi] = O(λ2 · M i−2) for each i ∈ [r].

Proof. Recall from the statement of Lemma 5 that λ ≥
√

NM . Next, we will use induction
to prove the claim “E[Yi] ≤ (4r2 · M)i−1N for all i ∈ [r]”, which will establish the lemma
because M i−1N ≤ λ2 · M i−2. For i = 1, E[Y1] is trivially bounded by N ; hence, the claim
holds at i = 1.

Assuming the claim’s correctness for i = j − 1 where j ≥ 2, next we give the proof for
i = j. Consider, w.l.o.g., |R| ≥ j (otherwise, Yj = 0 and the claim is vacuously true). Given
a (j − 1)- or j-subset S of R, we define Z(S) to be 1 if S is identically colored; otherwise,
Z(S) := 0. Impose an arbitrary ordering on the tuples of R. Given a j-subset Sj of R,
we can list the tuples of Sj in ascending order as t1, t2, ..., tj . We call Sj an extension
of the (j − 1)-subset Sj−1 := {t1, t2, ..., tj−1}. Next, we discuss the relationship between
Pr[Z(Sj−1) = 1] and Pr[Z(Sj) = 1] by distinguishing three cases.

Case 1: tj(X1) ∈ ΠX1(Sj−1) and tj(X2) ∈ ΠX2(Sj−1). Clearly, Z(Sj) always equals
Z(Sj−1) and, hence, Pr[Z(Sj−1) = 1] = Pr[Z(Sj) = 1].

Case 2: tj(X1) ∈ ΠX1(Sj−1) but tj(X2) /∈ ΠX2(Sj−1). First note that if Z(Sj−1) is
0, so must be Z(Sj). Consider now Z(Sj−1) = 1; hence, Γ maps all the values in
ΠX2(Sj−1) to the same color, say, c ∈ [s]. Z(Sj) = 1 if and only if Γ(tj(X2)) = c. Thus,
Pr[Z(Sj) = 1] = Pr[Z(Sj−1) = 1] · Pr[Γ(tj(X2)) = c | Z(Sj−1) = 1] = Pr[Z(Sj−1) = 1]/s.

Case 3: tj(X1) /∈ ΠX1(Sj−1) but tj(X2) ∈ ΠX2(Sj−1). This is symmetric to Case 2, and
we also have Pr[Z(Sj) = 1] = Pr[Z(Sj−1) = 1]/s.

Case 4: tj(X1) /∈ ΠX1(Sj−1) and tj(X2) /∈ ΠX2(Sj−1). Again, if Z(Sj−1) is 0, so must be
Z(Sj). When Z(Sj−1) = 1, Γ maps (i) all the values in ΠX1(Sj−1) to the same color, say,
c1 ∈ [s], and (ii) all the values in ΠX2(Sj−1) to the same color, say, c2 ∈ [s]. Z(Sj) = 1 if
and only if Γ(tj(X1)) = c1 and Γ(tj(X2)) = c2. Hence, Pr[Z(Sj) = 1] = Pr[Z(Sj−1) =
1] · Pr[Γ(tj(X1)) = c1, Γ(tj(X2)) = c2 | Z(Sj−1) = 1] = Pr[Z(Sj−1) = 1]/s2.

Denote by Sj and Sj−1 the set of all j- and (j − 1)-subsets of R, respectively. We bound
E[Yj ] =

∑
Sj ∈ Sj

Pr[Z(Sj) = 1] using a charging argument. Each Sj ∈ Sj is the extension
of a unique (j − 1)-subset Sj−1. If Sj is a Case-1 extension, we charge a weight of 1 on
Sj−1; if Sj is a Case -2 or -3 extension, we charge a weight of 1/s on Sj−1; if Sj is a Case -4
extension, we charge a weight of 1/s2 on Sj−1. Note that each Sj−1 ∈ Sj−1 can be charged
more than once because Sj−1 can have multiple extensions. The above discussion implies

E[Yj ] =
∑

Sj ∈ Sj

Pr[Z(Sj) = 1] =
∑

Sj−1 ∈ Sj−1

Pr[Z(Sj−1) = 1] · total weight charged on Sj−1. (10)

To analyze how much total weight can be charged on a (j − 1)-subset Sj−1 of R, observe:
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Sj−1 has at most (j − 1)2 extensions of Case 1. Such an extension must add to Sj−1 a
tuple tj satisfying tj(X1) ∈ ΠX1(Sj−1) and tj(X2) ∈ ΠX2(Sj−1). Since each of ΠX1(Sj−1)
and ΠX2(Sj−1) has size at most j − 1, at most (j − 1)2 tuples can be selected as tj .

Sj−1 has at most (j − 1)λ extensions of Case 2. Such an extension must add to Sj−1 a
tuple tj ∈ R satisfying tj(X1) = v, for some v ∈ ΠX1(Sj−1). As the degree of v is at
most λ (by definition of λ), at most λ tuples in R can be selected as tj . The bound
(j − 1)λ thus follows from the fact |ΠX1(Sj−1)| ≤ j − 1.

Symmetrically, Sj−1 has at most (j − 1)λ extensions of Case 3.

Trivially, Sj−1 has at most N extensions of Case 4.
It thus follows that the total weight charged on Sj−1 is at most (j − 1)2 + 2(j−1)λ

s + N
s2 , which

is at most 4r2M given the value of s in (4). We can then obtain from (10):

E[Yj ] ≤
∑

Sj−1 ∈ Sj−1

Pr[Z(Sj−1) = 1] · (4r2M) = E[Yj−1] · (4r2M) ≤ (4r2M)j−1N

where the last inequality used our inductive assumption E[Yj−1] ≤ (4r2M)j−2N . ◀

I/O Cost in Expectation. We now proceed to analyze the expected I/O cost of the
algorithm in Section 3.1. The lemma below is essentially a corollary of Lemma 6.

▶ Lemma 7. For any R ∈ Q, E[
∑

c1,c2∈[s] |Rc1,c2 |r] = O(λ2 · Mr−2).

Proof. Because r is a constant,
∑

c1,c2∈[s] |Rc1,c2 |r = O(s2 +
∑

c1,c2∈[s]:|Rc1,c2 |≥r

(|Rc1,c2 |
r

)
),

where the term O(s2) accounts for the at most s2 pairs of (c1, c2) satisfying |Rc1,c2 | <

r.1 Observe that
∑

c1,c2∈[s]:|Rc1,c2 |≥r

(|Rc1,c2 |
r

)
is exactly Yr as defined in (9). Hence,

E[
∑

c1,c2∈[s] |Rc1,c2 |r] = E[O(s2 + Yr)] = O(λ2 · Mr−2) (here, we applied Lemma 6 and
the value of s in (4)). ◀

Hence, the term sk−2

Mr−1B

∑
R∈Q

∑
c1,c2∈[s] |Rc1,c2 |r has an expectation of O( sk−2

Mr−1B · λ2 ·
Mr−2) = O(λk/(Mk−1B)). We can now conclude that the algorithm in Section 3.1 has an
expected I/O cost of O(λk/(Mk−1B)) overall.

Achieving High Probability. Our analysis indicates that the I/O cost is O(λk/(Mk−1B))
as long as

∑
c1,c2∈[s] |Rc1,c2 |r = O(λ2 · Mr−2) for every R ∈ Q. By Markov inequality, the

probability for
∑

c1,c2∈[s] |Rc1,c2 |r to exceed 2r · E[
∑

c1,c2∈[s] |Rc1,c2 |r] = O(λ2 · Mr−2) is
at most 1/(2r). The union bound then assures us that, with probability at least 1/2,∑

c1,c2∈[s] |Rc1,c2 |r = O(λ2 · Mr−2) holds for all the r relations R ∈ Q. Once the coloring
function Γ has been chosen, by sorting, we can obtain the precise value

∑
c1,c2∈[s] |Rc1,c2 |r

for every R ∈ Q in sort(N) I/Os. As long as any
∑

c1,c2∈[s] |Rc1,c2 |r falls out of O(λ2 ·
Mr−2), we repeat from scratch by choosing another Γ. It takes O(log λ) repeats to ensure∑

c1,c2∈[s] |Rc1,c2 |r = O(λ2 · Mr−2) for all R ∈ Q with probability at least 1 − 1/λξ for an
arbitrarily large constant ξ. With the above modification, our algorithm has an I/O cost
O(sort(N) · log λ + λk/(Mk−1B)) with probability at least 1 − 1/λξ. The complexity is
O(λk/(Mk−1B)) as long as M = O(λ/ log2 λ).

1 Every such pair can contribute at most (r − 1)r = O(1) to
∑

c1,c2∈[s] |Rc1,c2 |r.
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3.3 When M = Ω((λ log λ)2/3)
This subsection will present another instantiation of the framework in Section 3.1 that
runs in O(λk/(Mk−1B)) I/Os with probability at least 1 − 1/λξ when M = Ω((λ log λ)2/3).
Combining this instantiation with the one in Section 3.2 proves Lemma 5.

Choice of Γ. We classify a value v ∈ adom as a low-degree value if its degree is less than
λ/

√
M , or a high-degree value otherwise (review Section 2.1 for the notion “degree”). Let

adomlo (resp. adomhi) be the set of low- (resp. high-) degree values. We can obtain the
degrees of all values in adom — hence, adomlo and adomhi — in O(sort(N)) I/Os.

Different strategies are deployed to map adomlo and adomhi to [s]. For adomlo, we
independently map each value therein to a color chosen from [s] uniformly at random. The
strategy for adomhi is, however, deterministic. By scanning adomhi once in O(N/B) I/Os,
we can break adomhi into at most N/λ disjoint groups such that, for each group, the total
degree of all the values therein is at most 5λ.2 Note that, as a value in adomhi has degree at
least λ/

√
M , each group contains at most 5λ

λ/
√

M
= 5

√
M values. Moreover, since λ ≥

√
NM ,

there can be no more than N/λ ≤ λ/M ≤ s groups. We treat each group as a distinct color,
and define function Γ2 : adomhi → [s] that maps a value v ∈ adomhi to color c ∈ [s] if v

appears in the c-th group. Functions Γ1 and Γ2 together define the coloring function Γ in (5).
The coloring step (defined in Section 3.1) can then be performed with sorting in O(sort(N))
I/Os.

Analysis. Next, we analyze the I/O cost of our algorithm in Section 3.1, given the above
choice of Γ. Our objective is to prove that (8) is bounded by O(λk/(Mk−1B)). The lemma
below establishes a crucial fact towards that purpose.

▶ Lemma 8. When M = Ω((λ log λ)2/3), |Rc1,c2 | = O(M) holds with probability at least
1 − 1/λξ′ for any relation R ∈ Q and any colors c1, c2 ∈ [s], where ξ′ can be an arbitrarily
large constant.

Proof. Let X1, X2 be the attributes in schema(R) such that X1 < X2 (recall from Section 3.1
that we have imposed an arbitrary total order on attributes). Divide Rc1,c2 into four subsets:

Rlo,lo
c1,c2

, the set of tuples t ∈ Rc1,c2 such that t(X1) and t(X2) are both in adomlo;
Rlo,hi

c1,c2
, the set of tuples t ∈ Rc1,c2 such that t(X1) ∈ adomlo but t(X2) ∈ adomhi ;

Rhi,lo
c1,c2

, the set of tuples t ∈ Rc1,c2 such that t(X1) ∈ adomhi but t(X2) ∈ adomlo;
Rhi,hi

c1,c2
, the set of tuples t ∈ Rc1,c2 such that t(X1) and t(X2) are both in adomhi .

We will show that each subset has size O(M) with probability at least 1 − 1/(4λξ′), which is
sufficient for proving the lemma.

The case of Rhi,hi
c1,c2

is the easiest. Every tuple t ∈ Rhi,hi
c1,c2

must set t(X1) to a high-degree
value from color (a.k.a. group) c1 and t(X2) to a high-degree value from color (a.k.a. group)
c2. As mentioned, every group has at most 5

√
M values. Hence, |Rhi,hi

c1,c2
| ≤ 25M .

To analyze Rlo,lo
c1,c2

, define Rlo,lo to be the set of tuples t ∈ R such that t(X1) and t(X2)
are both low-degree values. For each tuple t ∈ Rlo,lo, introduce a random variable Zt

2 Add the next high-degree value v to the current group as long as doing so will not push the group’s total
degree over 3λ. Otherwise, start a new group with only v; the preceding group must have a total weight
as least 2λ because the degree of v is bounded by λ. If the last group has a total degree less than 2λ,
combine it with the previous group (if it exists), which will yield a group with total weight at most 5λ.
This way, we guarantee that either only a single group exists, or every group has a total weight at least
2λ. As each tuple can contribute one to the degrees of at most two values in adomhi , the total weights
of all the groups add up to at most 2N . The number of groups is therefore at most 2N/(2λ) = N/λ.

ICDT 2023



11:12 Enumerating Subgraphs of Constant Sizes in External Memory

that equals 1 if t ∈ Rlo,lo
c1,c2

, or 0 otherwise. Our function Γ1 ensures Pr[Zt = 1] = 1/s2

with variance Var(Zt) = 1
s2 − 1

s4 . Define Z := |Rlo,lo
c1,c2

| =
∑

t∈Rlo,lo Zt. We will deploy
Lemma 4 to analyze how likely Z can deviate significantly from E[Z]. For this purpose,
create a dependency graph Glo,lo as follows. Each vertex of Glo,lo is the variable Zt of a
distinct tuple t ∈ Rlo,lo. Two vertices Zt1 and Zt2 are adjacent in Glo,lo if and only if
tuples t1 and t2 share the same value on attribute X1 or X2. It is easy to verify that
Glo,lo fulfills the independence requirement described in Section 2.3 and has a maximum
vertex degree at most 2λ/

√
M by definition of low-degree value. Now, apply Lemma 4

with µ := E[Z] = |Rlo,lo|/s2, σ := |Rlo,lo|/s2 >
∑

t∈Rlo,lo Var(Zt), ∆ := 2λ/
√

M , and
ϵ := Ms2/|Rlo,lo|. The application yields Pr[Z ≥ 2M ] ≤ exp(−Θ(1) · M1.5

λ ), which is at most
1/(4λξ′) as long as M = Ω((λ log λ)2/3).

The analysis of Rhi,lo
c1,c2

and Rlo,hi
c1,c2

is similar and deferred to Appendix C. ◀

We now return to our algorithm’s I/O cost in (8). As mentioned before, sk is bounded
by O(λk/(Mk−1B)). By the above lemma, with probability at least 1 − 1/λξ for an arbi-
trarily large constant ξ, sk−2

Mr−1B

∑
R∈Q

∑
c1,c2∈[s] |Rc1,c2 |r is bounded by O( sk−2

Mr−1B · s2Mr) =
O(λk/(Mk−1B)), applying the value of s in (4). We thus complete the proof of Lemma 5.

4 An EM Algorithm for Arbitrary Binary Joins

This section serves as a proof of:

▶ Theorem 9. Consider a binary join Q whose relations have distinct schemas. Let
G := (X , E) be the schema graph of Q, k := |X |, and N :=

∑
R∈Q |R|. There is an

algorithm in EM that, with high probability, emits every tuple of join(Q) exactly once in
O( Nk/2

Mk/2−1B
logM/B

N
B + Nρ

Mρ−1B ) I/Os, where ρ is the fractional edge covering number of G,
M is the number of words in memory, and B is the number of words in a disk block.

Theorem 1 follows from the above result and Lemma 3. Our solution can be regarded as
an efficient EM translation of an MPC algorithm in [23]. The non-trivial part is to show
that the I/O cost is as claimed. We will achieve the purpose by utilizing a mathematical
property of binary joins recently revealed by the isolated cartesian product theorem [23].

We consider |X | ≥ 3; otherwise, Q has only one relation and the tuples of join(Q) can
be emitted in O(N/B) I/Os. For each hyperedge e ∈ E , we will use Re to denote the (only)
relation in Q with schema e. As before, let adom be the combined active domain of Q.
Henceforth, we will fix

λ :=
√

NM. (11)

4.1 Residual Joins
We say that a value v ∈ adom is heavy if its degree is at least λ, or light otherwise. The
number of heavy values is O(N/λ). Let H be any subset of X := schema(Q). A configuration
of H is defined as a tuple η over H whose η(X) is heavy for every attribute X ∈ H. Let
config(H) be the set of all configurations η of H satisfying

η[e] ∈ Re for every e ∈ E such that e ⊆ H. (12)

It is clear that

|config(H)| = O((N/λ)|H|) = O((N/M)|H|/2) (13)
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Fix any configuration η ∈ config(H). For each hyperedge e ∈ E satisfying e \ H ≠ ∅, we
define relation Re(η) to be a subset of Re that includes every tuple t ∈ Re satisfying (i)
t(X) = η(X) for all X ∈ e ∩ H; (ii) t(X) is light for every X ∈ e \ H. Note that if e ∩ H = ∅,
then Re(η) = Re. Every such hyperedge e has a residual relation R′

e(η) defined as

R′
e(η) := Πe\H(Re(η)). (14)

The configuration η induces a residual join Q′(η) formalized as

Q′(η) := {R′
e(η) | e ∈ E , e \ H ≠ ∅} (15)

whose input size is

Nη :=
∑

R∈Q′(η)

|R|. (16)

▶ Example 10. Figure 1(a) shows the schema graph G := (X , E) of a join Q, where X := {A,

B, ..., L} and the hyperedges in E are represented as ellipses. Set H := {E, F, I} and consider
the configuration η with heavy values η(E) := e, η(F) := f, and η(I) := i. The figure
illustrates η by darkening vertices E, F, and I. Suppose η ∈ config(H), which means that
η[EF] is a tuple in REF, and η[EI] is a tuple in REI. Relation RDE(η) includes all such tuples
t ∈ RDE that use value e for t(E) and a light value for t(D). The residual relation R′

DE(η) is a
unary relation that is the projection of RDE(η) on D. The reader can verify that the residual
relations R′

AD(η), R′
DG(η), and R′

DH(η) are identical to RAD, RDG, and RDH, respectively. Edges
EI and EF define no residual relations. ◀

The lemma below, proved in Appendix D, will be useful in our analysis later.

▶ Lemma 11. The statements below are true for every H ⊆ X :∑
η∈config(H) Nη = O(Nk/2/Mk/2−1);

in O( Nk/2

Mk/2−1B
logM/B

N
B ) I/Os, we can ensure the following for all η ∈ config(H): each

relation of Q′(η) is stored in consecutive disk blocks.

It is easy to verify that

join(Q) =
⋃
H

( ⋃
η∈config(H)

join(Q′(η)) × {η}
)

. (17)

Next, we will present an algorithm that, given any H ⊆ X , emits each tuple of
⋃

η∈config(H) join(Q′(η))
×{η} exactly once. Executing the algorithm for all the 2|X | = O(1) subsets H ⊆ X emits
the entire join(Q), with no tuple emitted twice.

4.2 Simplifying Residual Joins
Fix an arbitrary H ⊆ X and define L := X \ H. We will call the attributes in H and L as
heavy and light attributes, respectively. An attribute X ∈ X is a border attribute if it is
adjacent to at least one heavy attribute.

By removing all the heavy attributes from G := (X , E), we obtain a residual graph
G′ := (X ′, E ′) where X ′ := X \ H and E ′ := {e \ H | e ∈ E and e \ H ≠ ∅}. An attribute
X ∈ X ′ is isolated if it is adjacent to no other attributes in G′. Denote by I the set of isolated
attributes. An isolated attribute is always a border attribute, but the reverse is not true.

▶ Example 12. Figure 1(b) shows the residual graph G′ := (X ′, E ′) of the schema graph
in Figure 1(a), after removing E, F, and I, as well as the hyperedges that have become
empty. The border attributes are B, C, D, H, J, K, and L, while the set of isolated attributes
is I = {B, C, J}. ◀
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(a) Schema graph G of Q (b) Residual graph G′ (c) Simplified residual graph G′′

Figure 1 A running example

Fix any configuration η ∈ config(H). G′ is the schema graph of Q′(η) (true for all η).
For each border attribute X ∈ X ′, G′ has at least one relation with schema {X}. Define:

R′′
X(η) :=

⋂
e∈E′:X∈e

ΠX(R′
e(η)) (18)

where R′
e(η) is defined in (14). Only the values in R′′

X(η) can contribute to join(Q′(η)).

▶ Example 13. Continuing on Example 12, consider again the residual graph G′ := (X ′, E ′)
in Figure 1(b). Set X to the border attribute D. The residual join Q′(η) has four relations
whose schemas contain D: unary relation R′

DE(η) and binary relations R′
AD(η), R′

DG(η), and
R′

DH(η), all of which were explained in Example 10. R′′
D (η) equals the intersection of

ΠD(R′
DE(η)) = R′

DE(η), ΠD(R′
AD(η)), ΠD(R′

DG(η)), and ΠD(R′
DH(η)). As another example, set X

to the isolated attribute J, which appears in two hyperedges in G′, both unary. R′′
J (η) is the

intersection of ΠJ(R′
IJ(η)) = R′

IJ(η) and ΠJ(R′
EJ(η)) = R′

EJ(η). ◀

For every binary e := {X1, X2} ∈ E ′, we define a relation R′′
e (η) ⊆ R′

e(η) as follows:
If X1 and X2 are both border attributes, then R′′

e (η) := R′
e(η) ▷◁ R′′

X1
(η) ▷◁ R′′

X2
(η);

If only X1 is a border attribute, then R′′
e (η) := R′

e(η) ▷◁ R′′
X1

(η);
If only X2 is a border attribute, then R′′

e (η) := R′
e(η) ▷◁ R′′

X2
(η);

If neither is a border attribute, then R′′
e (η) := R′

e(η).
Only the tuples in R′′

e (η) can contribute to join(Q′(η)).

▶ Example 14. Continuing on Example 13, if we set the hyperedge e to DH in E ′, then
R′′

e (η) contains only the tuples t ∈ R′
DH(η) with t(D) ∈ R′′

D (η) and t(H) ∈ R′′
H (η). For another

example, if e := GH, then R′′
e (η) contains only the tuples t ∈ R′

GH(η) with t(H) ∈ R′′
H (η). ◀

We can now define a simplified residual join induced by η:

Q′′(η) := {R′′
e (η) | binary e ∈ E ′} ∪ {R′′

X(η) | X ∈ I}. (19)

Define G′′ := (X ′′, E ′′) — the simplified residual graph — as the hypergraph where X ′′ := X ′,
and E ′′ includes (i) all the binary edges in E ′ and (ii) a unary edge {X} for every isolated
attribute X ∈ I. G′′ is the schema graph of Q′′(η) for all η ∈ config(H).

▶ Example 15. Continuing on Ex.14, Figure 1(c) shows the simplified residual graph G′′. ◀

It is rudimentary to verify several facts about the join Q′′(η) in (19). First, its input size
is at most that of Q′(η), which is Nη; see (16). Second, its relations have distinct schemas.
Third, as each relation of Q′(η) has been stored in consecutive disk blocks (Lemma 11), we
can achieve the same for Q′′(η) in O(sort(Nη)) I/Os; doing so for all η ∈ config(H) requires∑
η∈config(H)

O(sort(Nη)) = O
(

|config(H)| +
∑

η∈config(H)

Nη

B
log M

B

N

B

)
= O

( Nk/2

Mk/2−1B
log M

B

N

B

)
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I/Os, where the last equality used (13) and the first bullet of Lemma 11. Fourth, join(Q′′(η)) =
join(Q′(η)); hence, to process the original join Q in Theorem 9, it suffices to emit every
result tuple of join(Q′′(η)) exactly once, for all η ∈ config(H) and H ⊆ X .

4.3 Processing Simplified Residual Joins
Fix an arbitrary H ⊆ X , and define L, I, and G′′ := (X ′′, E ′′) as in the previous subsection.
Given an arbitrary η ∈ config(H), we will present an algorithm for processing the simplified
residual join Q′′(η). First, let us divide Q′′(η) into Q′′

bin(η) := {R′′
e (η) | binary e ∈ E ′′} and

Q′′
iso(η) := {R′′

X(η) | X ∈ I}. It is clear that join(Q′′(η)) = join(Q′′
bin(η)) × join(Q′′

iso(η)).

▶ Example 16. Continuing on Example 16, Q′′
bin(η) includes relations R′′

AD(η), R′′
DG(η),

R′′
DH(η), R′′

GH(η), and R′′
KL(η), while Q′′

iso(η) includes R′′
B (η), R′′

C (η), and R′′
J (η). ◀

Observe that Q′′
bin(η) is a binary join whose scheme graph has |L \ I| attributes; further-

more, the relations of Q′′
bin(η) contain only light values, implying that Q′′

bin(η) has a degree
at most λ. On the other hand, Q′′

iso(η) is merely the cartesian product of all the (unary)
relations therein. We process Q′′(η) by integrating BNL with the algorithm in Lemma 5.
Specifically, we chop each relation R′′

X(η) ∈ Q′′
iso(η) into O(⌈|R′′

X(η)|/M⌉) disjoint subsets
— called chunks — each of which fits in M/(k + 1) words. Define a chunk combination
as a collection of |Q′′

iso| chunks, each from a distinct relation in Q′′
iso. For every chunk

combination, load the |Q′′
iso| corresponding chunks in memory and then use the remaining

at least M/(k + 1) = Ω(M) words of memory to run the algorithm in Lemma 11. Every
time the algorithm emits a tuple t ∈ join(Q′′

bin(η)), we emit all the tuples of join(Q′′(η))
that can be produced by t and the memory-resident chunk data (this requires only CPU
computation). As there are at most O(

∏
X∈I⌈ |R′′

X (η)|
M ⌉) chunk combinations, the total I/O

cost spent on Q′′(η) is O(
∏

X∈I⌈ |R′′
X (η)|
M ⌉ · λ|L\I|

M |L\I|−1B
) with probability at least 1 − 1/λξ′ for

an arbitrarily large constant ξ′.
Processing all η ∈ config(H) in the above manner incurs a total I/O cost of

O
( λ|L\I|

M |L\I|−1B

∑
η∈config(H)

∏
X∈I

⌈ |R′′
X(η)|
M

⌉)
= O

((N

M

) |L\I|
2 M

B

∑
η∈config(H)

∏
X∈I

( |R′′
X(η)|
M

+ 1
))

(20)

where the derivation applied the definition of λ in (11).

▶ Lemma 17.
∑

η∈config(H)
∏

X∈I

(
|R′′

X (η)|
M + 1

)
= O(( N

M )ρ− |L\I|
2 ), where ρ is the fractional

edge covering number of the join Q stated in Theorem 9.

Proof. For each η ∈ config(H) and any non-empty J ⊆ I, define CPsizeJ (η) :=
∏

X∈J |R′′
X(η)|.

Crucially, observe that∏
X∈I

( |R′′
X(η)|
M

+ 1
)

= 1 +
∑

J ⊆I:J ̸=∅

∏
X∈J

|R′′
X(η)|
M

= 1 +
∑

J ⊆I:J ̸=∅

CPsizeJ (η)
M |J | .

Next, we will show that
∑

η∈config(H) 1 and the term
∑

η∈config(H)
CPsizeJ (η)

M |J | of each non-
empty J ⊆ I are all bounded by O((N/M)ρ− |L\I|

2 ), which will then establish Lemma 17
because there are 2|I| − 1 = O(1) choices for J .

From (11) and (13), we know
∑

η∈config(H) 1 = |config(H)| = O((N/M)|H|/2). As a
well-known fact [36], the value of ρ is at least |X |/2, where |X | is the number of attributes
in the schema graph of Q. Because |X | = |H| + |L| ≥ |H| + |L \ I|, we know |H|/2 ≤
(|X | − |L \ I|)/2 ≤ ρ − |L\I|

2 .
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It remains to analyze the term
∑

η∈config(H)
CPsizeJ (η)

M |J | for each non-empty J ⊆ I. We
apply Lemma 11 of [23] — a weaker version of the isolated cartesian product theorem in [23]

— which states
∑

η∈config(H) CPsizeJ (η) = O((N/M)ρ−(|J |+|L|)/2 · N |J |). This yields

∑
η∈config(H)

CPsizeJ (η)
M |J | = O

( ( N
M )ρ− |J |+|L|

2 · N |J |

M |J |

)
= O

((N

M

)ρ− |L\J |
2
)

= O
((N

M

)ρ− |L\I|
2
)

where the derivation used the fact J ⊆ I ⊆ L. ◀

Plugging the result of Lemma 17 into (20), we know that the simplified residual joins
induced by all the η ∈ config(H) can be processed using O(Nρ/(Mρ−1B)) I/Os in total
with probability at least 1 − |config(H)|/λξ′ , namely, w.h.p. if we set ξ′ sufficiently large.
Repeating the algorithm for all the O(1) subsets H ⊆ X settles the the original join Q in
O(Nρ/(Mρ−1B)) w.h.p.. We thus complete the proof of Theorem 9.

5 Conclusions

This paper has presented new progress in designing I/O-efficient algorithms for subgraph
enumeration, where the objective is to find all the occurrences of a pattern graph Q having
k = O(1) vertices in a data graph G := (V, E). Our algorithm guarantees an I/O complexity
O( |E|k/2

Mk/2−1B
logM/B

|E|
B + |E|ρ

Mρ−1B ) with high probability, where ρ ≥ k/2 is the fractional edge
covering number of Q, M is the number of words in memory, and B is the number of words
in a disk block. The algorithm matches an existing I/O lower bound of Ω( |E|ρ

Mρ−1B ) on the
class of indivisible algorithms whenever ρ > k/2 or M/B ≥ (|E|/B)ϵ for any constant ϵ > 0.
The main open problem left behind by our work is to eliminate the logM/B(|E|/B) factor
altogether, thus obtaining an algorithm that matches the lower bound in all cases.

Appendix

A Proof of Lemma 3

Every tuple t ∈ join(Q) defines |EQ| edges in G as follows: for every relation R ∈ Q
with schema(R) := {X1, X2}, t defines an edge {t(X1), t(X2)} in G. In general, for every
occurrence Gsub of Q in G, there must be at least one tuple t ∈ join(Q) defining exactly the
|EQ| edges in Gsub. The reverse, however, is not true: the |EQ| edges of a tuple t ∈ join(Q)
may not always induce a subgraph of G isomorphic to Q.

Every time a tuple t ∈ join(Q) is emitted, all the |EQ| edges defined by t are memory-
resident. Hence, we can check for free if those edges induce a subgraph of G isomorphic
to Q. If the answer is negative, we ignore t. Next, let us focus on the scenario where the
|EQ| edges do induce a subgraph Gsub isomorphic to Q. If we always emit Gsub in such a
case, we may risk emitting Gsub multiple times because join(Q) can contain multiple tuples
all of which define the edges of Gsub. Let S be the set of those tuples. To avoid duplicate
emissions, a simple strategy is to impose an (arbitrary) ordering on S, and emit Gsub only
if t is the smallest tuple in S according to the ordering. Whether t is indeed the smallest
can be checked in memory with no extra I/Os. This is because S is determined by the |EQ|
edges defined by t and, hence, can be enumerated in memory for free.

It is clear from the above discussion that, apart from the initial construction of Q which
incurs O(⌈|E|/B⌉) I/Os, we can emit all the occurrences of Q in G with no more I/Os
compared to evaluating Q. This completes the proof of the lemma.
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B Obtaining the Input Relations of Each Qγ in Section 3.1

Decide an arbitrary ordering on the attributes of X ; w.l.o.g., denote the attributes as
X1, X2, ..., Xk in ascending order. Every color scheme γ can now be represented as a vector
(γ(X1), γ(X2), ..., γ(Xk)). Let us impose a lexicographic order on the sk color schemes,
viewing each (γ(X1), γ(X2), ..., γ(Xk)) as a k-character string. Let R be a relation in Q;
w.l.o.g., assume that schema(R) = {Xi, Xj} for some i, j satisfying 1 ≤ i < j ≤ k. In
preprocessing, we sort the tuples t ∈ R by lexicographic order on (Γ(t(Xi)), Γ(t(Xj)) —
viewing the pair as a 2-character string — and group those tuples by (Γ(t(Xi)), Γ(t(Xj)) in
the disk. We do so for all the relations R ∈ Q; the total preprocessing cost is O(sort(N)).

As mentioned in Section 4.1, we deploy BNL to evaluate the joins Qγ induced by all the
color schemes γ. We do so according to the lexicographic order on (γ(X1), γ(X2), ..., γ(Xk)).
For each γ, every relation Rγ ∈ Qγ is a group inside the relation R ∈ Q and, hence, has
been stored in consecutive blocks. The groups of each relation R ∈ Q are accessed in the
same lexicographic order determined in preprocessing. For each γ, the I/O cost of reading
the input relations of Qγ is dominated by that of BNL.

C Completing the Proof of Lemma 8

Because the analysis of Rhi,lo
c1,c2

is symmetric to that of Rlo,hi
c1,c2

, we will discuss only the former.
Define Rhi,lo

c1
as the set of tuples t ∈ R such that t(X1) is a high-degree value mapped to

color c1, and t(X2) is a low-degree value. Hence, |Rhi,lo
c1

| ≤ 5λ (because “group c1” — see the
creation of function Γ2 in Section 3.3 — has a total degree at most 5λ). For each tuple t ∈
Rhi,lo

c1
, introduce a random variable Zt that equals 1 if t ∈ Rhi,lo

c1,c2
, or 0 otherwise. Our function

Γ1 ensures Pr[Zt = 1] = 1/s and Var(Zt) = 1
s − 1

s2 . Define Z := |Rhi,lo
c1,c2

| =
∑

t∈Rhi,lo
c1

Zt.
Create a dependency graph Ghi,lo

c1
as follows. Each vertex of Ghi,lo

c1
is the variable Zt of a

distinct tuple t ∈ Rhi,lo
c1

. Two vertices Zt1 and Zt2 are adjacent in Ghi,lo
c1

if and only if tuples
t1 and t2 share the same value on attribute X2. It is easy to verify that Ghi,lo

c1
fulfils the

independence requirement described in Section 2.3 and has a maximum vertex degree at most
λ/

√
M . Applying Lemma 4 with µ := E[Z] = |Rhi,lo

c1
|/s, σ := |Rhi,lo

c1
|/s >

∑
t∈Rhi,lo

c1
Var(Zt),

∆ := λ/
√

M , and ϵ := Ms/|Rhi,lo
c1

| yields Pr[Z ≥ 6M ] ≤ exp(−Θ(1) · M1.5

λ ), which is at most
1/(4λξ′) as long as M = Ω((λ log λ)2/3).

D Proof of Lemma 11

The first statement follows directly from Lemma 6 of [23]. We will prove only the second
statement. We first perform O(sort(N)) I/Os to obtain, for each attribute X ∈ H, the
list of all the O(

√
N/M) heavy values in the active domain of X . Then, we compute the

cartesian product — denoted as S — of the |H| lists in O(|S|/B) I/Os; note that S is
the set of all configurations. In another O(sort(|S|)) I/Os, we can remove from S those
configurations violating (12) and, thus, produce config(H) in the disk. The cost so far is
O(sort(|S|)) = O( Nk/2

Mk/2−1B
logM/B

N
B ) because |S| = O((

√
N/M)|H|).

Next, we explain how to generate the input relations of the residual joins Q′(η) for
all η ∈ config(H). For this purpose, consider each hyperedge e ∈ E in turn (recall that
G := (X , E) is the schema graph of Q). If e ∩ H = ∅, Re (i.e., the relation in Q with schema
e) appears in all the residual joins Q′(η) where η ∈ config(H). As Re is already stored in
consecutive blocks, this relation requires no more processing. If e ⊆ H, then Re contributes
nothing to residual joins. It remains to discuss the case where e ∩ H has a single attribute.
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W.o.l.g., assume that e = {X1, X2} with X1 /∈ H but X2 ∈ H. Each tuple t ∈ Re appears
in the residual join of every configuration η ∈ config(H) satisfying η(X2) = t(X2); the
number of such η is O((

√
N/M)|H|−1). To compute residual relations, we first sort both Re

and config(H) on attribute X2 and then produce Re ▷◁ config(H) in the disk by merging the
two sorted lists; the cost is O(sort(|config(H)|)+sort(N)+|Re ▷◁ config(H)|/B). Then, group
the tuples t ∈ Re ▷◁ config(H) by t[H], which can be done in O(sort(|Re ▷◁ config(H)|)) I/Os.
Each group corresponds to a configuration η ∈ config(H) where η = t[H] for an arbitrary
tuple t in the group (all tuples in the group share the same t[H]). The X1-values of the group’s
tuples constitute the residual relation R′

e(η). The total I/O cost is O( Nk/2

Mk/2−1B
logM/B

N
B )

because |Re ▷◁ config(H)| = O(N · (
√

N/M)|H|−1) and |H| ≤ k − 1 (recall that X1 /∈ H).
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